Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation–assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning–based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. Significance:An end-to-end pipeline for deep learning–assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.more » « less
- 
            Abstract Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems. This article is categorized under:Engineering Water > Methodsmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
